
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

How to Program on 50,000
Processors

Karen Devine
Discrete Algorithms and Mathematics Department

Sandia National Laboratories, Albuquerque
kddevin@sandia.gov

Work with:
Erik Boman, Bob Heaphy, Bruce Hendrickson (SNL)

Umit Çatalyürek (Ohio St.)
Rob Bisseling (SNL CSRI; Utrecht Univ.)

Robert Preis (SNL CSRI; Paderborn Univ.)

50,000 Processors ?!?!
• Emerging problems require greater computing capability.

– Multiscale simulations, MEMS, biology, data mining, …
• To make computers productive…

– Application software has to work with the hardware.
– More efficient computing models to reduce communication.
– Accommodation of architecture characteristics.

• To get real science done…
– Software has to work for the application developers.
– Make software effective and easy-to-use.

• Examples from the Zoltan toolkit.
– Support future computing needs.

Other Famous (?) Zoltans

Fortune-telling game;
Model for “Zoltar”
in movie “Big”

Other Famous (?) Zoltans

Zoltan, Hound of Dracula
1978 Movie starring Jose Ferrar

Available on DVD for $9.98 at amazon.com

 “When the Russian army unearths
the vault of Dracula, they
accidentally unleash his undead
human slave and the Count's
vampire hellhound Zoltan. But
these fiends need a new master
and head for Los Angeles to find
Dracula's last living descendant,
family man Michael Drake. Now
with the help of an international
vampire hunter, can Drake
destroy Zoltan and his pack of
blood-crazed devil dogs before
'man's best friend' can fetch the
final soul of the damned?”

Other Famous (?) Zoltans

• “Geek magician” guaranteeing “100% adequacy in all he
does.”
• http://www.justadequate.com/zoltan.htm
• zoltan@justadequate.com

The Zoltan Toolkit

Unstructured Communication

A F
C

A B C
0 1 0

B
E

I
G

D E F
2 1 0

H
D

G H I
1 2 1

Distributed Data
Directories

Data Migration

Matrix Ordering Dynamic Memory
Debugging 

Dynamic Load
Balancing

Data services for unstructured, dynamic and/or adaptive computations.
http://www.cs.sandia.gov/Zoltan

Partitioning / Load Balancing
• Partitioning problem: Assign work to processors to

– Minimize processor idle time (i.e., balance loads), and
– Minimize interprocessor communication.

• In next generation systems:
– Processor speeds increasing faster than network

speeds.
– Decompositions with minimal communication costs are

more important.

Traditional Graph Model
•Kernighan, Lin, Schweikert, Fiduccia,

Mattheyes, Simon, Hendrickson, Leland,
Kumar, Karypis, et al.
•Represent simulation as a (weighted) graph:

– Vertices == computation associated with objects.
– Edges == dependencies between two objects.
– Weight of edges cut by subdomain boundaries

approximates communication volume.
•Graph partitioning:

– Assign equal vertex weight to processors.
– Attempt to minimize weight of cut edges.

Success of Graph Partitioning
•Widely used in finite element simulations.

– Local support --> localized data dependencies.
– Edge cut metric is reasonable approximation of

communication volume.

• Serial & parallel libraries:
– Chaco (Sandia)
– METIS/ParMETIS (U. Minn.)
– Jostle/PJostle (U. Greenwich)
– Party (U. Paderborn)
– Scotch (U. Bordeaux)

Where Graph Partitioning
Is Insufficient

“Semi-dense,” highly connected
(Circuits, biology, databases)

Rectangular
(Linear programming,
least squares)

Structurally non-symmetric
(Chemical processing, DFT)

Matrices from Tim Davis’
Matrix Collection, U. FL

Alternative: Hypergraph Model
• Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat,

Karypis, et al.
• Represent simulation as a (weighted) hypergraph.
– Vertices == computation associated with objects.
– Edges == dependencies between two or more objects.

• Hypergraph partitioning:
– Assign equal vertex weight to processors.
– Attempt to minimize weight of cut hyperedges.

1 2

3

45

6

• View matrix as hypergraph. (Çatalyürek & Aykanat)
– Vertices == columns
– Edges == rows

• Can represent non-symmetric and/or rectangular matrices.
• Communication volume associated with edge e is exactly:

 CVe = (# processors in edge e) - 1

x

x**y

x****y

x***=y

x**y

x***y

Hypergraph == Matrix

1 2

3

45

6

320K rows
2.6M nonzeros

130K rows
 2M nonzeros

15%

Reduction

17%

Reduction

7.9388,7209.3184,861Parallel HG
(Zoltan PHG)

97.4456,0552.2222,316Graph
(ParMETIS)

Time
(secs.)

Comm.
Volume

Time
(secs.)

Comm.
Volume

Partitioning
Method

Circuit simulation: Xyce ASIC
(Hoekstra)

DNA electrophoresis
(Cage12, van Heukelum)

Graph vs. Hypergraph Partitioning

Architecture-Aware Computing
• High-performance computing done on variety of

architectures.
– Clusters (of clusters (of clusters))
– Clusters of shared memory processors
– Supercomputers
– Grids

• Heterogeneity in hardware.
– Networks
– Processors

• Enable applications to adapt to their environment.

Determining the Environment
• Static environment represented by:

– “Metadata” describing system (e.g., through files).
– Benchmarks run to determine characteristics of environment.

• Examples:
– Atlas (Dongarra, et al.)
– PHiPAC (Bilmes, et al.)
– Cache-aware multigrid (Douglas, Hu)
– SALSA (Eijkhout, et al.)
– Jostle graph partitioner’s Network Cost Matrix (Walshaw, et al.)

• Dynamic/shared environment described by:
– Processor utilization statistics
– Network traffic and/or turnaround

• Examples:
– Network Weather Service (Wolski, et al.)
– Remos (Lowekamp, et al.)
– DRUM (Faik, et al.)

SMP SMPR

SMP RR

Sw

R

P PP P P P P P

Dynamic Resource
Utilization Monitor (DRUM)

• Faik, Flaherty, Gervasio (RPI); Teresco (Williams)
• Accepts static machine configuration and benchmarks.
• Monitors dynamic CPU utilization & network traffic.
• Builds model of system as hierarchy of components.

• Internal nodes: Network nodes
– Routers, switches.
– Bandwidth, traffic.

• Leaf nodes: Compute nodes
– Processors, SMPs.
– Utilization, idle time.

Architecture-Aware Partitioning
• DRUM + Zoltan
• DRUM computes “power” of a node.
– Combination of available computing time and network

bandwidth.
• Zoltan uses “power” as percentage of work to assign

to a node.
– Input to standard Zoltan partitioner.

• Apply to leaves only or to each level of hierarchy.
• Similar approach: Sinha & Parashar.
• Extensions:
– Memory limitations.
– Partition to control heat

generation (DeBenedictis).
SMP SMPR

SMP RR

Sw

R

P PP P P P P P

Simulation Software Design
• New models and advanced architectures place great

demands on application developers.

• Shouldn’t expect physicists/chemists/biologists/etc. to
deal with all the details.
– Development outside area of expertise.
– Time and resource consuming.
– Reinventing the wheel.

What is the best approach for development of complex
simulation software?

One Option: Frameworks
• Embed application in a simulation framework.
• Advantages:

– Many capabilities in one package.
– Common look and feel for framework applications.
– Framework team provides support.

• Disadvantages:
– Many capabilities in one package.
– Require use of framework data structures.
– Difficult to integrate with existing applications.
– Steep learning curve for application developers.
– Strong dependence on framework developers.

Hasbro, Inc.

Another option: Software Toolkits
• Construct applications from smaller software “parts.”
• “Tinker-toy parallel computing” -- B. Hendrickson
• Toolkits include …

– Related services applications commonly need.
– Support for wide range of applications.
– Easy-to-use interfaces.
– Data-structure neutral design.

• Toolkits avoid …
– Prescribed data structures
– Heavy framework
– Limited freedom for application developers.

The Zoltan Toolkit

Unstructured Communication

A F
C

A B C
0 1 0

B
E

I
G

D E F
2 1 0

H
D

G H I
1 2 1

Distributed Data
Directories

Data Migration

Matrix Ordering Dynamic Memory
Debugging 

Dynamic Load
Balancing

Data services for unstructured, dynamic and/or adaptive computations.
http://www.cs.sandia.gov/Zoltan

Multiphysics Simulations
(MPSalsa)

x bA

=

Linear solvers & preconditioners
(Trilinos, ML)

Adaptive Mesh Refinement
(Chisels, SIERRA,

ALEGRA/Nevada, CTH-AMR)

Contact detection
(ACME)

Circuit Simulations
(Xyce)

1
2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1
2

Rg01
R

1
2 C01
C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1
2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Particle Simulations
(ChemCell)

Support for Many Applications

• Data-structure neutral design supports different application
data structures.

Zoltan Toolkit Flexibility

Recursive Coordinate Bisection (Berger, Bokhari)
Recursive Inertial Bisection (Taylor, Nour-Omid)

Space Filling Curves (Peano, Hilbert)
Refinement-tree Partitioning (Mitchell)

Octree Partitioning (Loy, Flaherty)

ParMETIS (Karypis, Schloegel, Kumar)
Jostle (Walshaw)

Hypergraph Partitioning
(Catalyurek, Aykanat, Karypis, Bisseling)

• Different application needs: no one-size-fits-all solutions.

Dynamic load balancing
• Zoltan (Sandia)
• DRAMA (NEC/Europe)

ODE solvers
• Sundials (LLNL)

Linear/Nonlinear solvers
• PETSc (Argonne)
• Trilinos (Sandia)

Visualization
• VTK (Kitware, Inc.)

Mesh adaptivity
• Pyramid (JPL)
• MeshSim (Simmetrix, Inc.)
• AOMD (RPI)

Communication
• UPS (LANL)

Optimization
• TAO (Argonne)

Toolkit Examples

 A
 P
 P
 L
 I
 C
 A
 T
 I
 O
 N

Toolkits: Pros and Cons
• Advantages

– “Expert” implementations of needed functionality.
– Easy to add to existing applications.
– Less cumbersome and limiting than frameworks.
– Broad testing community.
– Time and cost saving.

• Disadvantages
– Trust (but open-source distribution can help).
– Implement interfaces (but easier than implementing

algorithms or adopting framework data structures).
– Memory and performance costs (maybe; maybe not).

What else do we need to
program 50,000 processors?

•Accurate communication models (e.g.,
hypergraphs)
• System-sensitive software
• Effective software design (e.g., toolkits)
•Robust Compilers
• “Flight Data Recorder”
•Debuggers
• Profilers

For more information…
• Zoltan Home Page

– http://www.cs.sandia.gov/Zoltan
– User’s and Developer’s Guides
– Download Zoltan software under GNU LGPL.
– Hypergraph and architecture-aware partitioning to

be released Q4 FY05.

• Email:
– zoltan@cs.sandia.gov
– kddevin@sandia.gov

